CERTIFIED PERFORMANCE DATA

8 CENM-HV-F1
Circular Elbow No-Media
High velocity silencer (<2250 fpm)

Insertion Loss (IL)

+ "forward flow" where noise & airflow move in same direction (e.g. supply side)

- "reverse flow" where noise & airflow move in opposite directions (e.g. return side)

See Silencer Selection Instructions.

Pressure Drop (PD)
Pressure drops are reported in accordance with ASTM E477 methods and are based upon ideal flow conditions (5 diameters of straight duct on silencer inlet and 10 on outlet). Less than ideal conditions will result in an increase in pressure drop due to System Effects. See Silencer System Effects Data.

Generated Noise (GN)
@ 0.35 sq.ft. face area
CERTIFIED PERFORMANCE DATA

8 CENM-HV-F2
Circular Elbow No-Media High velocity silencer (<2250 fpm)

How to Specify Example:
8 x CENM-HV-F2 x 52

Insertion Loss (IL)

+ : “forward flow” where noise & airflow move in same direction (e.g. supply side)
- : “reverse flow” where noise & airflow move in opposite directions (e.g. return side)

See Silencer Selection Instructions.

Pressure Drop (PD)

Pressure drops are reported in accordance with ASTM E477 methods and are based upon ideal flow conditions (5 diameters of straight duct on silencer inlet and 10 on outlet). Less than ideal conditions will result in an increase in pressure drop due to System Effects. See Silencer System Effects Data.

Generated Noise (GN)

@ 0.35 sq.ft. face area

Duct Connection Size (in.)	Silencer Model	Silencer Length (in.)	Octave Band - Hz/Dynamic Insertion Loss (dB)
52	- 2250	15 17 30 31 15 13 11 9	63 125 250 500 1000 2000 4000 8000
0	14 12 29 21 11 12 12 10	63 125 250 500 1000 2000 4000 8000	
+ 2250	13 15 31 28 16 14 13 12	63 125 250 500 1000 2000 4000 8000	
64	- 2250	16 18 32 32 17 14 12 8	63 125 250 500 1000 2000 4000 8000
0	15 16 27 23 12 14 13 12	63 125 250 500 1000 2000 4000 8000	
+ 2250	14 19 31 32 18 16 15 13	63 125 250 500 1000 2000 4000 8000	
76	- 2250	16 20 34 33 19 15 12 7	63 125 250 500 1000 2000 4000 8000
0	17 19 26 26 14 15 13 13	63 125 250 500 1000 2000 4000 8000	
+ 2250	16 22 32 35 20 18 17 15	63 125 250 500 1000 2000 4000 8000	
88	- 2250	17 21 36 34 21 16 13 5	63 125 250 500 1000 2000 4000 8000
0	19 22 24 28 15 17 14 14	63 125 250 500 1000 2000 4000 8000	
+ 2250	18 26 32 38 21 20 19 17	63 125 250 500 1000 2000 4000 8000	

Generated Noise (GN)

@ 0.35 sq.ft. face area
Certified Performance Data

10 CENM-HV-F1
Circular Elbow No-Media High velocity silencer (<2250 fpm)

How to Specify Example:

10 X CENM-HV-F1 X 42

Insertion Loss (IL)

+ : “forward flow” where noise & airflow move in same direction (e.g. supply side)
- : “reverse flow” where noise & airflow move in opposite directions (e.g. return side)

See Silencer Selection Instructions.

Pressure Drop (PD)

Pressure drops are reported in accordance with ASTM E477 methods and are based upon ideal flow conditions (5 diameters of straight duct on silencer inlet and 10 on outlet). Less than ideal conditions will result in an increase in pressure drop due to System Effects. See Silencer System Effects Data.

Generated Noise (GN)
@ 0.55 sq.ft. face area
CERTIFIED PERFORMANCE DATA

10 CENM-HV-F2
Circular Elbow No-Media
High velocity silencer (<2250 fpm)

How to Specify Example:
10 X CENM-HV-F2 X 52

Insertion Loss (IL)

+ : “forward flow” where noise & airflow move in same direction (e.g. supply side)

- : “reverse flow” where noise & airflow move in opposite directions (e.g. return side)

See Silencer Selection Instructions.

Pressure Drop (PD)

Pressure drops are reported in accordance with ASTM E477 methods and are based upon ideal flow conditions (5 diameters of straight duct on silencer inlet and 10 on outlet). Less than ideal conditions will result in an increase in pressure drop due to System Effects. See Silencer System Effects Data.

Generated Noise (GN)
@ 0.55 sq.ft. face area
CERTIFIED PERFORMANCE DATA

12 CENM-HV-F1
Circular Elbow No-Media
High velocity silencer (<2250 fpm)

Insertion Loss (IL)
+ : “forward flow” where noise & airflow move in same direction (e.g. supply side)
- : “reverse flow” where noise & airflow move in opposite directions (e.g. return side)

See Silencer Selection Instructions.

Pressure Drop (PD)
Pressure drops are reported in accordance with ASTM E477 methods and are based upon ideal flow conditions (5 diameters of straight duct on silencer inlet and 10 on outlet). Less than ideal conditions will result in an increase in pressure drop due to System Effects. See Silencer System Effects Data.

Generated Noise (GN)
@ 0.79 sq.ft. face area
Insertion Loss (IL)

+ : "forward flow" where noise & airflow move in same direction (e.g. supply side)
- : "reverse flow" where noise & airflow move in opposite directions (e.g. return side)

See Silencer Selection Instructions.

Pressure Drop (PD)

Pressure drops are reported in accordance with ASTM E477 methods and are based upon ideal flow conditions (5 diameters of straight duct on silencer inlet and 10 on outlet). Less than ideal conditions will result in an increase in pressure drop due to System Effects. See Silencer System Effects Data.

Generated Noise (GN)

@ 0.79 sq.ft. face area
14 CENM-HV-F1
Circular Elbow No-Media
High velocity silencer (<2250 fpm)

How to Specify Example:
14 X CENM-HV-F1 X 36

Duct Connection Size
Silencer Model
Silencer Length

Insertion Loss (IL)
+
"forward flow" where noise & airflow move in same direction (e.g. supply side)
-
"reverse flow" where noise & airflow move in opposite directions (e.g. return side)

See Silencer Selection Instructions.

Pressure Drop (PD)
Pressure drops are reported in accordance with ASTM E477 methods and are based upon ideal flow conditions (5 diameters of straight duct on silencer inlet and 10 on outlet). Less than ideal conditions will result in an increase in pressure drop due to System Effects. See Silencer System Effects Data.

Generated Noise (GN)
@ 1.07 sq.ft. face area
14 CENM-HV-F2
Circular Elbow No-Media
High velocity silencer
(<2250 fpm)

How to Specify Example:
14 x CENM-HV-F2 x 48

Insertion Loss (IL)

+ : "forward flow" where noise & airflow move in same direction (e.g. supply side)
- : "reverse flow" where noise & airflow move in opposite directions (e.g. return side)

See Silencer Selection Instructions.

Pressure Drop (PD)

Pressure drops are reported in accordance with ASTM E477 methods and are based upon ideal flow conditions (5 diameters of straight duct on silencer inlet and 10 on outlet). Less than ideal conditions will result in an increase in pressure drop due to System Effects. See Silencer System Effects Data.

Generated Noise (GN)
@ 1.07 sq.ft. face area
Insertion Loss (IL)

+ : “forward flow” where noise & airflow move in same direction (e.g. supply side)

- : “reverse flow” where noise & airflow move in opposite directions (e.g. return side)

See Silencer Selection Instructions.

Pressure Drop (PD)

Pressure drops are reported in accordance with ASTM E477 methods and are based upon ideal flow conditions (5 diameters of straight duct on silencer inlet and 10 on outlet). Less than ideal conditions will result in an increase in pressure drop due to System Effects. See Silencer System Effects Data.

Generated Noise (GN)

@ 1.40 sq.ft. face area

How to Specify Example:

16 x CENM-HV-F1 x 36

<table>
<thead>
<tr>
<th>Duct Connection Size</th>
<th>Silencer Model</th>
<th>Silencer Length</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

16 CENM-HV-F1

Circular Elbow No-Media

High velocity silencer (<2250 fpm)

Insertion Loss (IL)

Legend:
- **+** : “forward flow” where noise & airflow move in same direction (e.g. supply side)
- **-** : “reverse flow” where noise & airflow move in opposite directions (e.g. return side)

Pressure Drop (PD)

Pressure drops are reported in accordance with ASTM E477 methods and are based upon ideal flow conditions (5 diameters of straight duct on silencer inlet and 10 on outlet). Less than ideal conditions will result in an increase in pressure drop due to System Effects. See Silencer System Effects Data.

Generated Noise (GN)

@ 1.40 sq.ft. face area

<table>
<thead>
<tr>
<th>Length (in.)</th>
<th>Face Velocity (ft. per min)</th>
<th>Octave Band - Hz/Dynamic Insertion Loss (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>125</td>
<td>250</td>
</tr>
<tr>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 2250</td>
<td>10</td>
<td>14</td>
</tr>
<tr>
<td>0</td>
<td>6</td>
<td>11</td>
</tr>
<tr>
<td>+ 2250</td>
<td>8</td>
<td>14</td>
</tr>
<tr>
<td>- 2250</td>
<td>11</td>
<td>18</td>
</tr>
<tr>
<td>0</td>
<td>7</td>
<td>13</td>
</tr>
<tr>
<td>+ 2250</td>
<td>9</td>
<td>19</td>
</tr>
<tr>
<td>- 2250</td>
<td>12</td>
<td>22</td>
</tr>
<tr>
<td>0</td>
<td>9</td>
<td>15</td>
</tr>
<tr>
<td>+ 2250</td>
<td>10</td>
<td>23</td>
</tr>
<tr>
<td>- 2250</td>
<td>12</td>
<td>25</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>17</td>
</tr>
<tr>
<td>+ 2250</td>
<td>12</td>
<td>28</td>
</tr>
</tbody>
</table>

Generated Noise (GN)

@ 1.40 sq.ft. face area

<table>
<thead>
<tr>
<th>Length (in.)</th>
<th>Face Velocity (ft. per min)</th>
<th>Octave Band - Hz/Generated Noise (dB re 10 -12 watts)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>63</td>
<td>125</td>
</tr>
<tr>
<td>- 2250</td>
<td>66</td>
<td>63</td>
</tr>
<tr>
<td>- 1750</td>
<td>58</td>
<td>55</td>
</tr>
<tr>
<td>+ 1750</td>
<td>62</td>
<td>62</td>
</tr>
<tr>
<td>+ 2250</td>
<td>67</td>
<td>73</td>
</tr>
</tbody>
</table>

1-800-565-8401 | info@vibro-acoustics.com | www.vibro-acoustics.com

[At the end of the page]
CERTIFIED PERFORMANCE DATA

16 CENM-HV-F2

Circular Elbow No-Media High velocity silencer (<2250 fpm)

Insertion Loss (IL)

+ : "forward flow" where noise & airflow move in same direction (e.g. supply side)
- : "reverse flow" where noise & airflow move in opposite directions (e.g. return side)

See [Silencer Selection Instructions](#).

Pressure Drop (PD)

Pressure drops are reported in accordance with ASTM E477 methods and are based upon ideal flow conditions (5 diameters of straight duct on silencer inlet and 10 on outlet). Less than ideal conditions will result in an increase in pressure drop due to System Effects. See [Silencer System Effects Data](#).

Generated Noise (GN)

@ 1.40 sq.ft. face area

<table>
<thead>
<tr>
<th>Length (in.)</th>
<th>Face Velocity (ft. per min)</th>
<th>Octave Band - Hz/Dynamic Insertion Loss (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>63</td>
</tr>
<tr>
<td>48</td>
<td>- 2250</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>+ 2250</td>
<td>6</td>
</tr>
<tr>
<td>60</td>
<td>- 2250</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>+ 2250</td>
<td>8</td>
</tr>
<tr>
<td>72</td>
<td>- 2250</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>+ 2250</td>
<td>11</td>
</tr>
<tr>
<td>84</td>
<td>- 2250</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>+ 2250</td>
<td>13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duct Connect Size (in.)</th>
<th>B x B (in.)</th>
<th>Silencer Model</th>
<th>Silencer Length (in.)</th>
<th>Weight (lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>24x24</td>
<td>48</td>
<td>102</td>
<td>0.06 0.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.12 0.16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.20 0.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.29 0.30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>60</td>
<td>127</td>
<td>0.07 0.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.14 0.18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.23 0.29</td>
</tr>
<tr>
<td></td>
<td></td>
<td>72</td>
<td>152</td>
<td>0.08 0.12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.16 0.21</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.26 0.32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>84</td>
<td>177</td>
<td>0.09 0.13</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.18 0.23</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.29 0.36</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.43 0.56</td>
</tr>
</tbody>
</table>

Caution (>0.35") Pressure Drop may be too high for certain applications.

<table>
<thead>
<tr>
<th>Length (in.)</th>
<th>Face Velocity (ft. per min)</th>
<th>Octave Band - Hz/Generated Noise (dB re 10^-12 watts)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>63</td>
</tr>
<tr>
<td>All</td>
<td>- 2250</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>- 1750</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>+ 1750</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>+ 2250</td>
<td>70</td>
</tr>
</tbody>
</table>

1-800-565-8401 | info@vibro-acoustics.com | www.vibro-acoustics.com

VIBRO-AcouSTICS
A Swegon Group company